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Abstract. An analytical treatment of a generalized Langevin equation for a 
harmonic oscillator driven by generalized noises is presented. The 
overdamped limit (cases of high viscous damping) as a model of 
conformational dynamics of proteins is considered. The behavior of the 
oscillator is analyzed by calculation of the mean square displacement and 
normalized displacement correlation function. The results are expressed in 
terms of Mittag-Leffler type functions. Standard Brownian motion is a 
special case of the considered model. It is shown a good agreement with 
some experimental results. 
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1. INTRODUCTION 

The standard Brownian motion, which represents a random process driven by Gaussian 
white noise, can be analyzed either by standard diffusion equation for the probability 
distribution function or by stochastic Langevin equation for a Markov process, where the 
consecutive displacements are independent. Analysis lead to Gaussian form of the probability 
distribution function ( ) ( )2

1 1, (1 4 )exp 4π= −u x t K t x K t , where 1K  is the diffusion coefficient 
of dimension 2

1[ ] m / sK = , and linear dependence of the mean square displacement (MSD) on 
time, i.e. 2

1( ) 2〈 〉 =x t K t . Normal diffusion appears when the microscopic time scale is short 
comparing with the observation time. Contrary, one may observe deviations from Brownian 
diffusion. Thus, MSD has a power law dependence on time ( )2 ( ) 2 1α

α α〈 〉 = Γ +x t K t  [1], 
where Kα  is the generalized diffusion coefficient of dimension 2[ ] m / sK α

α = , and α  is the 
anomalous diffusion exponent. Such diffusion is the so-called anomalous diffusion 
(subdiffusion if 0 1α< <  and superdiffusion if 1 α< ), which is a characteristic for non-
Markovian processes, and can be observed in different systems [1-4]. This means that the 
evolution of the system in a given moment of time t  depends on the past; the time domain of 
the memory is long comparing with the characteristic time scale of the motion. Anomalous 
diffusion can be studied either by fractional differential equations for the probability distribution 
function [1,5,6] or by stochastic equations, such as the generalized Langevin equation (GLE). 
GLE for a particle of mass in a given potential ( )V x  is given by [7]: 
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where ( )x t  is the particle displacement, ( )v t  is the particle velocity, ( ) d ( ( )) d= −F x V x t x  is 
the external force acting on the particle due to the potential ( )V x , ( )tγ  is the frictional 
memory kernel, and ( )tξ  is a stationary random force with a zero mean ( ) 0tξ = . Its 
correlation is given by: 

 ( ) ( ) ( )' 'ξ ξ = −t t C t t . (2) 

The notation 〈⋅〉  means an ensemble averages, i.e. statistical averaging over an 
ensemble of particles at a given moment of time t. In case when fluctuation and dissipation 
come from same source then correlation (2) is related with ( )γ t  via the second fluctuation-
dissipation theorem [7]:  

 ( ) ( )γ= BC t k T t  (3) 

where Bk  is the Boltzmann constant and T  is the absolute temperature of the environment in 
which the particle is immersed. Otherwise, relation (3) does not hold. GLE (1) can be derived 
from the Hamiltonian representing the physical microscopic interactions between the particle 
and the surrounding complex environment [7]. 

The case of large friction (high damping) in GLE (1) usually is analyzed to model 
experimental data related to the movements within proteins. Large friction means that the 
acceleration of the particle ( )x t  is negligible. Due to the liquid environment of proteins 
frictional term usually is very high, so the overdamped behavior of the particle is of importance 
[2,8,9]. When the movement is confined to a short range, which is a case for movement within 
proteins, the potential function can be well approximated by a harmonic potential 
( ) 2 2 / 2V x m xω= , where ω  is the oscillator frequency. Thus, GLE (1) in which appears a term 

of form ( )2m x tω  represents a suitable model of anomalous dynamics within proteins [2,8,9]. 
Different frictional memory kernels ( )tγ  have been introduced. In [10] we introduced 

an internal noise with correlation of form:  

 ( ) , , 1
,

α
α β δ β δ

α βαδ ατ τ
−  

= − 
 

C tC t t E , (4) 

where τ  is the characteristic memory time, , ,Cα β δ  is a coefficient independent on time and 
which may depends on 0α > , 0β > , 0δ > . Here ( ),Eδ

α β ⋅  is the three parameter Mittag-Leffler 
(M-L) function ( ) ( ),

0
( ) !δ

α β δ α β
∞

=
= Γ + ⋅∑ k

k
k

E z k z k , ( )( ),  ,    ,  0zβ δ α∈ ℜ > , ( )kδ  is the 
Pochhammer symbol, 0( ) 1δ = , ( ) ( ) / ( )δ δ δ= Γ + Γk k . 
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For 1δ =  it becomes a two parameter M-L function ( ) ( )1
, .E z E zα β α β=  and for 

1β δ= =  – one parameter M-L function ( ) ( )1
,1E z E zα α= . By using asymptotic expansion 

formula [12], ( ),
0

( ) ( ) ( ) ( ( )) ( ) !δ δ
α β δ δ β α δ

∞
−

=
= − Γ Γ + Γ − + ⋅ −∑ k

k
E z z k k z k , 1z > , for large 

values of z , it can be shown that ( )tγ  satisfies ( ) ( )lim lim 0
t t

t s sγ γ
→∞ →∞

= =  [10], where 

, ,ˆ( ) [ ( )] ( )αδ β α α δ
α β δγ γ γ τ− −= = +s L t s s  is the Laplace transform of ( )tγ , 

, , , ,
αδ

α β δ α β δγ τ= BC k T  [10]. The case 0τ → , 1α ≠ , 1β δ= =  yields the power law frictional 
memory kernel ( ) / (1 )α

α α−= Γ −C t C t , which has been used to model anomalous diffusive 
processes [13-15]. Note that the standard Brownian motion is a special case of the considered 
problem and can be obtained in case when 1α β δ= = =  and 0τ →  (noise term becomes the 
Dirac delta or white noise). In [10,16-19] M-L frictional memory kernels were used as 
generalizations of the one of power law form. In [19-21] fractional GLEs with different noise 
terms were analyzed and used for modeling generalized diffusive processes.  

This paper is organized as follows. In section 2 formal solution of the GLE is given. 
The asymptotic behavior of the oscillator in the long time limit is analyzed. Exact results for the 
MSD, and normalized displacement correlation function in case of generalized internal noises, 
in the overdamped limit, are derived. Some possible applications of the considered model are 
discussed. Conclusions are given in section 3. 

2. GLE FOR A HARMONIC OSCILLATOR. 
SOLUTION AND RESULTS 

Let us solve the GLE (1) for a harmonic oscillator. By Laplace transform one obtains: 

 ( ) ( ) ( ) ( )1 2
0 0

1ˆ ˆ ˆω−   = − + +    
X s x s I s v F s G s

m
 (5) 

 ( ) ( ) ( ) ( )2
0 0

1 ˆˆ ˆ ˆ ω = + −  
V s v F s g s x G s

m
 (6) 

where ˆ ( ) [ ( )]=X s L x t , ˆ ( ) [ ( )]=V s L v t , ( )0 0x x=  and ( )0 0v v=  are initial particle displacement 
and initial particle velocity, respectively, ˆ ( ) [ ( )]ξ=F s L t , 

 ( ) ( )
1

2 2
ˆ

ˆ /γ ω

−

=
+ +

sI s
s s s m

, (7) 

( ) ( )ˆ ˆG s sI s= , ( ) ( )ˆĝ s sG s= . The inverse Laplace transform of relations (5) and (6) yields:  

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
0 0

0

0

11 ' ' d '

1 ' ' d '.

ω ξ

ξ

 = − + + − = 

= + −

∫

∫

t

t

x t x I t v G t G t t t t
m

x t G t t t t
m

 (8) 
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0
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1 ' ' d '

1 ' ' d '

ω ξ

ξ

= − + − =

= + −

∫

∫

t

t

v t v g t x G t g t t t t
m

v t g t t t t
m
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where 2
0 0( ) [1 ( )] ( )ω〈 〉 = − +x t x I t v G t , 2

0 0( ) ( ) ( )ω〈 〉 = −v t v g t x G t  are mean particle displacement 
and mean particle velocity, respectively, and 1 ˆ( ) [ ( )]−=I t L I s , 1 ˆ( ) [ ( )]−=G t L G s  and 

1 ˆ( ) [ ( )]−=g t L g s  are the so-called relaxation functions. They are related to the MSD 2 ( )〈 〉x t , 
time-dependent diffusion coefficient ( ) 2(1 2)d ( ) d= 〈 〉D t x t t , velocity autocorrelation function 
(VACF) 2( ) ( ) (0) (0)= 〈 〉 〈 〉VC t v t v v . In the long time limit ( t →∞ ), one obtains 

2 ( ) (2 ) ( )〈 〉 = Bx t k T m I t , ( ) ( ) ( )= BD t k T m G t  and ( ) ( )=VC t g t  [14,16,17].  

2.1. Asymptotic behavior 

Sometimes, finding the relaxation functions is very complicated problem. Since we are 
interested to analyze the anomalous diffusive behavior of the oscillator, we investigate the 
asymptotic behavior of relaxation functions in the long time limit by using Tauberian theorem 
[22]. It stands that if the asymptotic behavior of a given non negative and monotone function 
( )r t  for t →∞  is ( )r t t α−

 , then its corresponding Laplace transform pair ˆ( ) [ ( )]=r s L r t , has 
the behavior 1ˆ( ) (1 ) αα −Γ −r s s , for 0s → . Thus, for 1 1β αδ β− < < + , it is obtained:  

 

( ) ( ) ( )
( )2 1, ,2 2 2 1

2 1 ,2 3
0

2
1 1

1 ,2
, , , ,

             for   .

αδ βα β δ
αδ β

αδ β αδ β
αδ β αδ β

α β δ α β δ

ω

ω

∞
− + −+ +

− + − +
=

+ − + −
+ − + −

 
= − − 

 
 
− →∞  
 

∑



k k k
k

k B

B B

C
I t t E t

k Tm

k Tm k Tmt E t t
C C
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By using ( ) ( ) ( ), , 1/E z zE zα β α α β β+= + Γ , relaxation function (10) yields the MSD:  

 ( )
2

2 1
12

, ,

2 1 αδ β
αδ β

α β δ

ω
ω

+ −
+ −

  
= − −      

B Bk T k Tmx t E t
m C

, (11) 

from where we find ( )D t  and ( )VC t . Relation (11) turns to 2 1( ) (2 )αδ β αδ β+ −〈 〉 Γ + −x t t  in 
case of a free particle ( ( ) 0V x = ) [10], from where one concludes that anomalous diffusion 
occurs (subdiffusion if 1β αδ β− < <  and superdiffusion if 1β αδ β< < + ). Relation (11) 
gives the equilibrium value 2 2( ) 2 ω→∞〈 〉 =t Bx t k T m . Note that relation (10) is the exact 
expression for the case 0τ → . The result for 1( ) ( )αδ β αδ β− − Γ −VC t t  can be used, for 
example, in the description of experimental data for VACF in the motion of atoms in liquid 
argon [23]. For 1α β δ= = =  it is obtained the result for the standard Brownian motion, i.e. a 
linear dependence of the MSD on time. 
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2.2. High viscous damping 

 Next we investigate the behavior of oscillator in case of high friction. Neglecting the 
inertial term, by applying an inverse Laplace transform [24] of relation (7), relaxation function 
becomes: 
 

 ( ) ( )
( )

( )

1
1, ,1

0 , 1 12 2 2
0

1
ˆ /

α
βα β δ δ

α β α

γ
γ ω ω ω τ

− ∞
−−

− +
=

    
= = − −    +     

∑
k

k k
k

k

s tI t L t E
s s m m

. (12) 

From the asymptotic expansion formula for the three parameter M-L function, ( )0I t  
becomes:  

 

( )
2

1 1
0 1 ,2

, , , ,

2
1

12
, ,

1 1 ,

αδ β αδ β
αδ β αδ β

α β δ α β δ

αδ β
αδ β

α β δ

ω

ω
ω

+ − + −
+ − + −

+ −
+ −
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= − =  

 
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B

k Tm k TmI t t E t
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k TmE t
C

 (13) 

in the long time limit. Thus, MSD has the form (11). Thus, the anomalous diffusive behavior of 
the oscillator may be investigated by considering high viscous damping, instead of the GLE (1).  

2.3. Results and discussion 

Let us now consider the following initial conditions: 2 2
0 ω〈 〉 = Bx k T m , 0 0 0〈 〉 =x v , 0( ) 0ξ〈 〉 =t x  

[15]. Thus, for the normalized displacement correlation function given by 2
0 0( ) ( )= 〈 〉 〈 〉XC t x t x x , 

which is an experimentally measured quantity, one obtains:  

 ( ) ( ) ( )
2 1

1 2
02

1 1
ˆ /
ω ω

γ ω

−
−  

= − = − + 
X

sC t L I t
s s s m

 (14) 

where 0 ( )I t  is given by (13). For 0τ →  it follows ( )2 1
1 , ,( ) ( ) αδ β
αδ β α β δω + −

+ −= −X BC t E k Tm C t , 
which is in agreement with experimental results for the fluctuations of the distance between 
fluorescein-tyrosine pair within a single protein [9]. 

Let us further analyze obtained results. Firstly, note that relaxation function (12) is 
represented in terms of infinite series of three parameter M-L functions. The long time limit 
yields relation (11) which is represented by one parameter M-L function. It is known that 

( ) ( )α
α= −f t E t  is a completely monotone function for 0 1α< <  [25], i.e. ( )( 1) ( ) 0− ≥nn f t  for 

all 0t >  and all n = 0, 1, 2, ... The case 1 α<  may show interesting oscillation-like behavior. By 
taking constants that appear in relation (11) equal to one and by using 1ω = , the MSD (11) is 
completely monotone for 0 1 1αδ β< + − < . From Fig. 1(a) ( 1ω = ) we see that for 3 / 2α = , 

1β = , 1/ 2δ =  (solid line), and 1/ 2α = , 7 /16β = , 3 / 4δ =  (dashed line), MSD has 
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monotonic behavior since 0 1 1αδ β< + − < . For 5 / 4α = , 1/ 2β = , 1δ =  (dot-dashed line), 
and 3 / 4α = , 1/ 4β = , 1δ =  (dotted line), MSD shows oscillation-like behavior since 
1 1αδ β+ − > . In Fig. 1(b) graphical representation of 2( ) 1 ( )ω= −XC t I t , where ( )I t  is given 
by (10), for 1/ 2α = , 7 /16β = , 3 / 4δ = , is presented. We see that for 0.3ω =  (solid line), 

( )XC t  has monotonic decay and does not cross the zero line. For 3ω =  (dashed line) and 1ω =  
(dot-dashed line), ( )XC t  crosses the zero line and it has oscillation-like behavior. For 0.74ω =  
(dotted line), ( )XC t  has non monotonic decay. It approaches the zero line but does not cross it. 
These results are different than the ones for a classical damped oscillator, where only two types 
of motion may appear: overdamped motion when ( ) 0〈 〉 >x t  for any time t when 0 0〈 〉 >x  and 
there are no oscillations, and underdamped motion when ( )〈 〉x t  crosses the zero line and 
oscillates [15]. The frequency on which transition from overdamped to underdamped motion 
appears is so-called critical frequency. Here, in the considered GLE, there are additional 
definitions of critical frequencies [15] on which the oscillator changes its behavior, for example 
from monotonic to non monotonic decay of ( )XC t  without crossings of the zero line. They 
depend on parameters of the frictional memory kernel and their estimation is a nontrivial 
problem [15]. Such oscillations, as shown in Fig. 1(b), were observed in the molecular dynamic 
simulations of fluctuations of donor-acceptor distance for a single protein [26]. Furthermore, 
such oscillations and power law decay of the distance between fluorescein-tyrosine pair within a 
single protein have been observed experimentally [9]. 

3. CONCLUSIONS 

It is shown that the GLE for a harmonic oscillator is a suitable model for anomalous 
dynamics within proteins. It is shown that the case of high friction, which is simpler, can be 
used for analyzing the anomalous diffusive behavior instead of the GLE (1). The obtained 
analytical results for the MSD and normalized displacement correlation function are in good 
agreement with some known experimental observations. 

 

(a) (b) 

Fig. 1: Graphical representation of: (a) MSD; (b) ( )XC t . 
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ХАРМОНИСКИ ОСЦИЛАТОР ДВИЖЕН СО 
ГЕНЕРАЛИЗИРАНИ ШУМОВИ: 

ПОВЕДЕНИЕ ПРИ СИЛНО ТРИЕЊЕ 

Т. Сандев1 

 
1Дирекција за радијациона сигурност, Партизански одреди 143, 

 ПФах 22, 1020 Скопје, Република Македонија 
 

Апстракт. Презентиран е аналитички третман на генерализирана 
равенка на Ланжевен за хармониски осцилатор движен со 
генерализирани шумови. Разгледан е случајот на силно вискозно триење 
како модел за конформациона динамика на протеини. Поведението на 
осцилаторот е анализирано со пресметување на средното квадратно 
поместување и нормираната корелациона функција на поместувањето. 
Резултатите се претставени со помош на функциите на Митаг-Лефлер. 
Стандардното Брауново движење претставува специјален случај на 
разгледаниот модел. Покажана е добра согласност со некои 
експериментални резултати. 
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